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2 Time Integration of Diapycnal Duffusion

Abstract

In isopycnal coordinate ocean models, diapycnal diffusion must be expressed as a nonlinear

difference equation. This nonlinear equation is not amenable to traditional implicit methods of

solution, but explicit methods typically have a time step limit of order  (where  is the

time step, h is the isopycnal layer thickness, and κ is the diapycnal diffusivity), which cannot gen-

erally be satisfied since the layers could be arbitrarily thin. It is especially important that the diffu-

sion time integration scheme have no such limit if the diapycnal diffusivity is determined by the

local Richardson number. An iterative, implicit time integration scheme of diapycnal diffusion in

isopycnal layers is suggested. This scheme is demonstrated to have qualitatively correct behavior

in the limit of arbitrarily thin initial layer thickness, is highly accurate in the limit of well resolved

layers, and is not significantly more expensive than existing schemes. This approach is also shown

to be compatible with an implicit Richardson number dependent mixing parameterization, and to

give a plausible simulation of an entraining gravity current with parameters like the Mediterranean

Water overflow through the Straits of Gibraltar.

∆t h
2 κ⁄≤ ∆t
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1.  Introduction

In geopotential coordinate ocean models, time integration of the vertical diffusion equation

is fairly simple. Vertical diffusion is described by a linear equation, and an implicit time stepping

scheme for vertical diffusion in geopotential coordinates is easily implemented by solving a tridi-

agonal equation and is stable for any time step and vertical resolution. In many cases the vertical

resolution is sufficiently coarse that the time steps set by other processes can even be used safely

with an explicit discretization of vertical diffusion. By contrast, when density is the vertical coor-

dinate of an ocean model, the vertical diffusion equation is much more difficult to integrate in time.

Implicit integration of the diapycnal diffusion equation in isopycnal coordinates is complicated by

the fact that this equation is nonlinear, and since the vertical resolution migrates with the flow there

is no guarantee that the vertical resolution is sufficiently coarse to permit an explicit time integra-

tion.

Vertical advection in geopotential coordinates is often thought of as independent of diapy-

cnal diffusion, whereas its counterpart in isopycnal coordinates, diapycnal advection (motion of

fluid across isopycnal surfaces), is the direct result of diapycnal diffusion. The nonlinearity of dif-

fusion in the isopycnal layer thickness equation is the counterpart of the nonlinear vertical advec-

tion of density in geopotential coordinates.

Isentropic coordinate atmospheric models do not suffer quite the same difficulty as isopy-

cnal coordinate ocean models because radiative transfer and moist convection act to restore the

(dry) atmospheric stratification much more efficiently than does thermal diffusion in the ocean.

An explicit time integration scheme is inadequate for an isopycnal coordinate model

because it is subject to the time step limit  for stability, where κ is the diapycnal dif-

fusivity, ∆t is the time step, and h is the layer thickness. Since there should be no lower bound on

the thickness of a layer, it is impossible to satisfy this constraint in all cases, even if κ is constant.

If κ is determined by the local gradient Richardson number, a very large κ may be indicated pre-

cisely where h is smallest. Hu (1996a) avoids this constraint by calculating the diapycnal buoyancy

flux using the average density gradient over a specified distance from the center of a layer (typically

20 m) if the layer is thinner than this distance. (The Hu scheme is used in some versions of the

Miami Isopycnic Coordinate Ocean Model, and in simulations by Hu (1996b).) This solution suf-

fers from being potentially an O(N2) operation for each horizontal grid point, where N is the num-

ber of layers, and from having quantized buoyancy fluxes when the layers are thin. Oberhuber

(1993) calculates the entrainment rate of each layer implicitly, but the entrainment in each layer is

independent of the entrainment in adjacent layers. Oberhuber’s approach can lead to spuriously

vanishing layers if the diffusivity (or in his construction the layer turbulent kinetic energy) differs

significantly between adjacent layers, requiring a corrective step in his time discretization. McDou-

κ∆t h
2⁄ 1 2⁄<



4 Time Integration of Diapycnal Duffusion

gall and Dewar (1998) mention the step limitation of explicit integration in their exploration of the

discretization of diapycnal diffusion in isopycnal coordinate models but offer no solution.

It should be noted that the ocean’s interior is characterized almost everywhere by diffusive

timescales that are extremely long compared with the other characteristic timescales of the flow,

such as the inertial period. In such situations any time integration scheme will work well for

describing diapycnal diffusion in an isopycnal coordinate model, and it is no more difficult to rep-

resent diapycnal mixing than it would be in a depth-coordinate model. The techniques described

here reproduce the proper solutions in this most common case where diffusion operates slowly,

while also giving sensible results in those situations where diapycnal mixing is vigorous.

The time step limit with explicit time integration of diapycnal diffusion is a particularly

acute problem for incorporation of Richardson number dependent mixing (or another form of

model-state dependent mixing). With a forwards scheme, entrainment must somehow be limited to

keep the neighboring layers from developing negative thickness, and this limit severely restricts the

utility of Richardson number dependent mixing for describing instances of intense and strongly

spatially varying entrainment. It is not clear that an effective Richardson number entrainment

scheme can be implemented in an isopycnal coordinate model without using some form of implicit

time integration.

But some form of model-state dependent mixing is critical for some oceanographically

important phenomenon. For example, entraining gravity currents are extremely important for

determining the watermass properties that are found in the open ocean, and strongly nonlinear

entrainment is absolutely essential for reproducing the observed transport and density variations

along the plume (Price and Baringer, 1994). The recent DYNAMO project finds that a lack of

entrainment in the gravity currents downstream of flow over sills is one of the most acute deficien-

cies of the isopycnal coordinate model they use (The DYNAMO Group, 1997). Similarly, it is gen-

erally accepted that the combination of small-scale turbulence and resolvable shears is responsible

for the vigorous mixing in the subsurface equatorial ocean, and that the resolvable Richardson

numbers rarely drop below a critical threshold value (Peters et al., 1995).

The isopycnal coordinate models in most common use are coupled to a variable density sur-

face bulk mixed layer (Bleck et al., 1992; Oberhuber 1993). The surface mixed layer is, by defini-

tion, unstratified and hence would always represented by just one or two isopycnal layers (if the

mixed layer density falls between the prescribed layer densities). Unlike geopotential or sigma

coordinate ocean models, a pure isopycnal coordinate ocean model will never be able to resolve

the vertical structure of the mixed layer. Sea surface temperature is often a critical field either for

coupling an ocean model with a model atmosphere or for calculating the surface buoyancy flux, but

with a pure isopycnal coordinate model sea surface temperatures would have abrupt jumps where

the layers outcrop. Also, it is difficult to apply separate heat and fresh water flux surface boundary

conditions without a bulk mixed layer - they may nearly compensate each other, requiring mechan-
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ical mixing to the correct depth to give accurate tendencies of sea surface temperature and salinity.

When the surface structure is of interest or a nontrivial equation of state is used, it is advisable to

use a bulk surface mixed layer. The turbulent mixing schemes described here for use in the interior

and in the bottom boundary layer are probably only useful for the surface mixed layer as well for

idealized geophysical fluid dynamics studies.

The present work suggests an implicit time integration technique for diapycnal diffusion in

isopycnal coordinate ocean models. When the diffusivity of a layer is specified, two schemes are

suggested for the entrainment rate of a layer given the entrainment rates of neighboring layers.

These schemes are essentially implementations of the dual-entrainment approach of Oberhuber

(1993) and McDougall and Dewar (1998), in which each layer simultaneously entrains both from

above and below, and both diapycnal diffusion and advection are simultaneously described. These

schemes give qualitatively correct results in all parts of parameter space. If a very long time step is

used, a modified iterative technique may be used to give arbitrarily accurate solutions, otherwise a

simple implicit technique gives reasonable results. Using an estimate of the derivative of each

layer’s entrainment rate with respect to the entrainment rates of neighboring layers, a Newton’s

method based vertical iteration, subject to constraints to impose surface and bottom flux boundary

conditions, is used to update the estimate of layer entrainment rates. This approach is shown to give

qualitatively accurate entrainment rates in difficult cases, even after just the first iteration, and con-

verges to an exact solution with multiple iterations. With one iteration, this scheme is only moder-

ately more expensive than an explicit time integration scheme for diffusion with limits to keep the

layer thicknesses from becoming negative, and avoids numerical instabilities due to diapycnal dif-

fusion. A partially implicit layer Richardson number dependent entrainment scheme can be com-

bined with the diffusive layer entrainment scheme, and such an approach is shown to give

reasonable entrainment in a simple model of a gravity current, whereas an equivalent explicit

scheme is wholly inadequate.

2.  Diapycnal diffusion in isopycnal coordinate models

McDougall and Dewar (1998) present an excellent derivation of an appropriate discretiza-

tion for diapycnal diffusion in isopycnal coordinate models with both temperature and salinity as

state variables. Only a very brief reprise of that work is presented here, and for simplicity density

is assumed to be a state variable. The time integration techniques presented here are entirely con-

sistent with the McDougall and Dewar (1998) discretization.

The Boussinesq continuity equation and the density equation,

 and (2.1)∇ U3⋅ 0= Dρ
Dt
-------- ∇ κ∇ρ( )⋅=
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(here U3 is the three dimensional velocity, ρ is potential density and κ is the Fickian diapycnal dif-

fusivity), can be combined to give the continuity equation in isopycnal coordinates:

. (2.2)

The only approximations here are that only diapycnal diffusion alters the density of a fluid parcel

and that the slope of isopycnals is sufficiently small that the total density gradients are well approx-

imated by just the vertical gradients. Both of these assumptions are well justified for the ocean at

mesoscales and larger except in regions of active convection. If (2.2) is integrated in density

between  and  and the layer thickness is defined as

, (2.3)

the layer continuity equation results:

. (2.4)

Finally, the vertical buoyancy flux in interior layers can be discretized consistently as

. (2.5)

Here the definition of κk would include the difference between the inverse of the average h over a

grid cell and the average of (1/h) over that cell. Since the buoyancy fluxes are defined only for each

layer, any buoyancy flux boundary conditions must be applied to the top and bottom layers, as will

be described in section §4. Combining (2.4) and (2.5) with the definition

gives the final form of the diffusive continuity equation:

, (2.6)

Introducing the layer buoyancy flux, Fk, defined by

, (2.7)

and the thickness loss from layer k due to the fluxes in the neighboring layers, Gk, defined by
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, (2.8)

(2.6) becomes

. (2.9)

There can be no mass flux through the upper surface of the topmost layer or the bottom surface of

the bottommost layer, so the first and second terms on the right hand side of the first line of (2.9)

are omitted in the top and bottom layers respectively.

As shown by Oberhuber (1993) and McDougall and Dewar (1998), a dual-stream upstream

discretization for the entrainment of density (or any other state variable that is conserved upon mix-

ing) guarantees that the density of each layer is conserved with a linear equation of state. With the

dual-stream entrainment parameterization, both diapycnal diffusion and diapycnal advection are

simultaneously described by fluid moving both upwards and downwards across every interior inter-

face in appropriate ratios. Oberhuber (1993) further utilizes the dual-entrainment scheme to com-

pensate for any discrepancies between the modeled layer density and the preordained target layer

density by adjusting the ratio of the entrainment by a layer from the layers above and below. The

density conservation equation,

(2.10)

can be combined with (2.9) to give

(2.11)

showing that the layer density is constant with the dual-entrainment upstream discretization. This

property holds regardless of the scheme used to solve (2.10) in time. For temperature or salinity,

an implicit time discretization of the appropriate counterpart to (2.10) (calculating horizontal

advection separately) is both necessary and easy to implement.

If there is a nonlinear equation of state, the density or potential density of a layer will not

be guaranteed to be perfectly constant after diapycnal mixing. The layer density will also vary due

to cabbeling arising from along-isopycnal mixing. These discrepancies may be addressed by an

appropriate, conservative vertical remapping (which is essentially what McDougall and Dewar
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(1998) advocate), or it may be addressed as a part of the vertical mixing, as Oberhuber (1993) does.

Ignoring horizontal advection, an implicit time discretization of (2.10) with the ratios of entrain-

ment from above and below modified (along the lines used by Oberhuber (1993)) to correct for den-

sity deviations can be written as

. (2.12)

It can easily be shown that  will agree with a layer target density  if

, (2.13)

For the stability of (2.12), the corrective flux must be less than the minimum flux that a layer will

have averaged over a time step, so for an interior layer (2.13) must be replaced by

(2.14)

or a more restrictive limit. This corrective flux is not perfect, both because its magnitude is limited

in thick and weakly diffusive layers, and because of nonlinearities in the equation of state, but it

will cause the layer densities to be damped towards the target densities. These corrective fluxes

would calculated before any vertical iteration, and their inclusion is straightforward in all of the

developments that follow, so they will be omitted henceforth for the sake of clarity. If the density

anomalies are not predominantly due to errors in the diapycnal mixing, an minimally diffusive ver-

tical remapping would be the preferred remapping. Even with the corrective fluxes, occasional ver-

tical remapping may still prove necessary to correct layer density discrepancies, depending on the

characteristics of a particular flow.

In geopotential coordinates diffusion is described by a linear equation, and it is always pos-

sible to choose a diffusivity and time step which are small enough that an explicit discretization of

diffusion is stable. Alternately, it is trivial to implement an implicit discretization of diffusion in

one dimension with standard techniques. In isopycnal coordinates, diapycnal diffusion is described

by a nonlinear equation, and it is possible for a flow to evolve into a state (with very thin layers) in

which an explicit discretization of diffusion is unstable, regardless of how small the diffusivity or

time step. It is absolutely essential to use an implicit discretization of the right hand side of (2.6),

but standard (linear) techniques cannot handle this nonlinear equation.

The fundamental difference between diapycnal diffusion in geopotential coordinates (or

other fixed coordinates) and diapycnal diffusion in isopycnal coordinates is that isopycnal coordi-

nates make the physically meaningful connection between diapycnal advection and diapycnal dif-

ρk
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fusion, through the dual-entrainment scheme, while in fixed coordinates these two processes are

separate. The nonlinear diapycnal advection term in fixed coordinates is in some sense responsible

for the nonlinearity of diffusion in Lagrangian (isopycnal) coordinates. This physically well-moti-

vated combination of diapycnal advection and diffusion is largely responsible for the exceedingly

valuable adiabatic nature of an isopycnal coordinate model, but it demands a sophisticated treat-

ment of diapycnal diffusion to be able to accurately handle all realizable situations. The remainder

of the paper presents a suitable time integration technique for diapycnal diffusion in isopycnal

coordinates.

3.  Integrating the equation for a single layer

If the diffusive buoyancy fluxes (Fk) in neighboring layers are known, and the density dif-

ferences between the layers are equal, the diffusive continuity equation (neglecting horizontal

advection) for layer k, (2.6), becomes

. (3.1)

This is a fairly simple equation, but it is not one that is commonly encountered, so it is worthwhile

to briefly discuss several options for integrating this equation numerically. An arbitrarily accurate,

iterative solution technique is described first. This scheme is useful both for consideration for use

in ocean models and as a standard against which to judge other time integration techniques. A num-

ber of algebraic discretizations of (3.1) are described next. These schemes are less computationally

demanding and are the most likely to be useful for ocean models. All of these schemes give accu-

rate results when diffusive timescales are long, as is the case in much of the ocean’s volume. The

distinction between the schemes arises in the uncommon, but oceanographically important, case

where mixing timescales are relatively short.

An exact iterative solution for one layer

Eq. (3.1) can be integrated analytically in time for ∆t starting at a thickness  to give a

closed form implicit solution for  provided that :

, (3.2)

or

. (3.3)

If , (3.1) can be integrated analytically to give an explicit expression for :
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. (3.4)

Eq. (3.2) or (3.3) must be solved iteratively. The solution to (3.3) can be found to at least

10 significant digits within 4 or 5 iterations of Newton’s method (for a sufficiently small error the

number of digits of accuracy doubles with each iteration) when the initial guess is taken as

, or (3.5)

, (3.6)

and subsequent iterations are

. (3.7)

The buoyancy flux implied by (3.7) is

. (3.8)

Even a single iteration of (3.7) gives an excellent estimate of the exact flux if the first guess is qual-

itatively reasonable, as is the case with (3.5).
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iteration, it must be constrained to be within the physically motivated (and mathematically ade-

quate) bounds

. (3.9)

Algebraic approximations to the solution for one layer

The iterative estimate of the flux can be compared with several algebraic discretizations of

(3.1). A forward Euler integration of (3.1) gives

, or (3.10)

. (3.11)

The forward Euler integration is the simplest possible time stepping scheme, and it is perfectly ade-

quate in the limit of slow diffusive timescales that characterizes much of the volume of the ocean.

A backward Euler integration of (3.1) gives

, (3.12)

which can be solved for  to give

, (3.13)

which implies a layer buoyancy flux of

. (3.14)

There are two ways to write a trapezoidal scheme integration of (3.1). The first is
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, (3.16)

and this implies a layer buoyancy flux of

. (3.17)

The second trapezoidal scheme integration of (3.1) is

, (3.18)

which can be solved for  to give

, (3.19)

and a layer buoyancy flux of

. (3.20)

All four of these schemes are consistent with the continuous equation. The two trapezoidal

schemes are second order accurate in time, and exhibit smaller errors for small time steps than

would the forward scheme or the backward scheme, both of which are only first order accurate in

time.

Comparison between the approximations to the solution for one layer

There are several asymptotic limits of the analytic solution which can be compared with

these four proposed schemes. If  and  are both negligibly small,  should remain finite

for a finite time step. The backwards scheme and the first trapezoidal scheme satisfy this constraint,

while the forwards scheme and the second trapezoidal scheme are unbounded for excessively small

. If , the first trapezoidal scheme (3.16) exactly reproduces the analytic solution (3.4).

The backwards scheme entrains too little with  - by a factor of  for infinitesi-

mal  and by a factor of ( ) for large .

For very large time steps,  should tend toward ( ). Only the backwards scheme

satisfies this constraint. The first trapezoidal scheme tends toward ( ), which may

be negative. The second trapezoidal scheme and the forward scheme are both unbounded, although

the second trapezoidal scheme is at least guaranteed to yield positive . The second trapezoidal

scheme will not be considered further in this paper because of its unstable behavior for small values
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of . The forwards scheme will be considered, but only because of its previous use in the

literature (Hu, 1996a; McDougall and Dewar, 1998).

The trapezoidal schemes are superior to the backwards scheme for short time steps, while

the backwards scheme is the only one of the four algebraic schemes presented above to reproduce

the qualitative behavior of the exact solution in all of the relevant asymptotic limits. It is possible

to construct a second order accurate scheme with two iterations of the backwards scheme that

exhibits qualitatively correct behavior for all of the criteria discussed above, but this scheme is as

complicated and computationally expensive as the more accurate exact iterative solution discussed

above.

There are only two free parameters in (3.1) after it has been nondimensionalized by divid-

ing hk,0 by  and dividing Gk by . The fractional error in the layer thick-

ness change over one time step calculated with the various schemes relative to the exact solution is

depicted in Fig. 1 and Fig. 2 for two values of Gk. For a small value of Gk (Fig. 1), all of the

schemes except the forwards scheme give qualitatively accurate fluxes for all initial thicknesses.

Typically , and in this part of parameter space, all of the schemes are accurate, but the trap-

ezoidal scheme and the first iteration towards the exact scheme give a very high degree of accuracy.

Figure 1. Fractional error of the thickness changes within one time step calculated with four
schemes, relative to the flux calculated by iterating (3.8) to convergence, with Gk/Γ = 0.2.
The fluxes with these four schemes are given by one iteration of (3.8) starting from (3.5),
(3.14) for the backwards scheme, (3.11) for the forwards scheme, and (3.17) for the first
trapezoidal scheme.
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With a large value of Gk (Fig. 2), all of the schemes have some problems when  - the first

iteration towards the exact scheme gives a reasonably accurate estimate of the flux, while the back-

wards scheme overestimates the flux. The forwards scheme and trapezoidal scheme tend to drasti-

cally underestimate the flux and the thickness after a time step can be negative for these two

schemes, as seen in Fig. 3. Reasonable behavior in the limit of large Gk is essential if the model is

to be useful for simulation of strongly entraining flows, such as flow of dense water over a sill.

The two schemes among those listed above which satisfy all of the desired properties are

the backwards scheme and the first iteration (or repeated iteration) towards the exact scheme start-

ing with a reasonably accurate first guess. The backwards scheme is simpler, but the first iteration

is significantly more accurate. The relative expense of the two schemes depends partially on

whether it is more expensive to evaluate an exponential function or a square root, but the exact iter-

ative scheme is generally much more complicated. Also the exact scheme requires a reasonably

accurate starting guess for the iteration. Both schemes always yield positive thicknesses, both

asymptote to Gk/2 for large Gk, and both are well behaved for small initial thicknesses.

Although it is only first order accurate in time, the backwards scheme exhibits qualitatively

correct behavior in all limits, which makes this scheme attractive. If an exceedingly accurate solu-

tion to (3.1) were desired, the iterative exact scheme would be the best choice, but for use with an

ocean model it is simply not reasonable to use a highly accurate but expensive scheme. The com-

putational resources could certainly be used more efficiently to minimize truncation errors associ-

Figure 2. As in Fig. 1, but with Gk/Γ = 20. The equivalent plot with a much larger value of
Gk/Γ is qualitatively similar.
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ated with resolution or the parameterization of other physical processes. Still, the fact that first

iteration towards the exact scheme gives qualitatively correct approximations to the solution to

(3.1) in all limits and is often significantly more accurate than any of the algebraic discretizations

may make this first iteration a viable scheme for consideration with ocean models. In the next sec-

tion the backwards scheme and the first iteration are examined for use in simultaneously solving

the set of equations (3.1) for many layers.

4.  Integration of the Diffusion Equation for Multiple Layers

For any of the schemes presented in §3 except the forward scheme, the diffusive buoyancy

flux in each layer depends nonlinearly on the fluxes in both of its neighbors. This prevents these

coupled equations from being solved simply with standard techniques. Also, the boundary condi-

tions are somewhat peculiar with density coordinates because the coordinates diffuse out of the

domain and the density at which the boundary conditions must be applied changes over time. An

effective method of handling these complications is described in this section.

Boundary conditions

Buoyancy flux boundary conditions are applied at the topmost and bottommost interfaces.

In order to conserve volume (or mass if the thicknesses are reinterpreted as pressure differences

Figure 3. Thickness after one time step with Gk/Γ = 20. The schemes are the same as are
depicted in Fig. 1 and Fig. 2.
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between the interfaces above and below a layer) and the density of the topmost or bottommost lay-

ers, there can be no buoyancy flux convergence at these outermost interfaces, so the buoyancy flux

within the topmost or bottommost layer must equal the buoyancy flux boundary condition. (A mass

source or sink boundary condition due to evaporation and precipitation or freezing and melting at

the bottom of sea ice can be applied instead fairly easily.) At interior interfaces, all layers entrain

fluid from their neighboring layers at a rate proportional to the buoyancy flux within that layer. The

net flux of fluid across an interface is simply given by , so the maximum

buoyancy flux that can occur within layer k for a timestep while still leaving at least a thickness ε
within each of the overlying layers is given by

, (4.1)

with  from the surface flux boundary condition. The schemes presented here all work

perfectly well with , but it may be useful (for example in calculating the vertical viscosity

or the Coriolis terms using a potential vorticity conserving discretization) to use a very small pos-

itive ε. Hallberg and Rhines (1996) use  m, and the same, absurdly small value is used

in the calculations here. The value of ε should be taken to be sufficiently small that any physically

reasonable amount of diffusion is not hindered. Similarly, the maximum buoyancy flux that can

occur within a timestep while leaving at least a thickness ε within each of the layers below is

(4.2)

with  implementing the bottom flux boundary condition. The maximum buoyancy

flux for each layer (including the top and bottom layers) is

. (4.3)

There is a possibility that  or that , in which case the buoyancy flux at the

top or bottom must be modified; in this case the surface or bottom buoyancy forcing can not be

accommodated with the given resolution in density space because all of the fluid is already in the

lightest or densest layer.

Interior Solutions

The exact solution to the set of equations given by any of the schemes from §3, with appro-

priately implemented boundary conditions can be found iteratively. For example, if the backwards

Euler integration scheme is adopted, an initial refinement of the flux in layer k, given the previous

guesses for the fluxes in all of the layers is
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, (4.4)

where n is the iteration number,

, and

. (4.5)

The sensitivity of this equation to changes in the fluxes of the adjacent layers is given by

. (4.6)

The exact iterative scheme of the previous section, (3.8), can be used with one iteration of each

layer equation per iteration through all the layers, subjecting each previous estimate to limits to

insure that it is qualitatively reasonable with the updated values of Gk. The algebra is much more

complicated with that scheme, but the derivation of the equivalent expression is straightforward, so

it will be omitted here. Linearizing around the estimated fluxes from (4.4) gives a set of equations

for the  based on Newton’s method

(4.7)

with the boundary conditions  and . This tridiagonal set of equations is

straightforward to solve. The logical constraints in (4.6) and (4.7) are not the formidable compli-

cations that they might seem to be, because if any layer k has a flux of , either all of the layers

above or all of the layers below have a flux  for layer j. A reasonable starting guess of the

fluxes for use with the first iteration is

. (4.8)

This vertical iteration usually converges rapidly to the exact solution of the set of equations;

there is an appreciable error in the first iteration (although the solution is not qualitatively wrong)

only when  in several adjacent interior layers, at which value

there is a transition between the large and small thickness asymptotic limits. The fluxes in much

thicker layers are largely independent of the fluxes in their neighbors, while the linearization in
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(4.7) is an excellent approximation for thinner layers. When the layers have approximately this

intermediate thickness, the backwards scheme converges more rapidly than does the exact iterative

scheme because  changes less abruptly with changing G with the backwards scheme.

An example of the fluxes generated by various schemes with several density fronts in the

middle of a fluid is given in Fig. 4. The initial density profile has two arbitrarily sharp and well

resolved interior density fronts.   Massless layers are included at the top and bottom of the profile

to demonstrate that the boundary conditions are correctly implemented with all the schemes. The

forwards Euler fluxes shown in Fig. 4 are truncated at a value of . This is the maximum

truncation value for which the neighboring layer will not be depleted with constant diffusivities and

density differences between layers. In practice a smaller truncation flux would have to be used if

the diapycnal diffusivity has vertical variations. Even with this large truncation flux, the forwards

Euler flux dramatically underpredicts the fluxes across the interior fronts. The backwards scheme

Figure 4. Diapycnal fluxes in one time step, in units of  for various schemes. The
clipped forwards scheme is the minimum of the flux from a forwards Euler calculation and

. The two backwards schemes differ only in the lack of the iterative correction as
described by (4.7). The exact flux is found by iterating the Newton’s method scheme to
convergence. The diffusivities and density differences between layers are uniform. Layers 1-
5, 15-23, 27-35 and 45-50 are initially essentially massless (  or  - it
makes no difference); layers 6-14 and 36-44 have thickness , while layers 24-26
have thickness . There is an insulating bottom boundary condition and a
downward surface flux of .
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without iteration similarly underpredicts the fluxes through the front, but at least in real simulations

this scheme could be implemented with the same accuracy seen in this simple demonstration. The

fluxes through the fronts are dramatically improved by even a single iteration of the form given by

(4.7) for either the backwards Euler scheme or the scheme based on Newton’s method. Subsequent

iterations rapidly reduce the errors further. (The two schemes differ both with the first iteration and

at convergence, but by relatively small amount; in Fig. 4 this difference would only be about

.) If there are strongly varying diffusivities with depth, the relative improvement of

the iterative schemes can be much greater than depicted here.

The computational expense of various schemes are shown in Table 1. These statistics are

only for calculations of the layer fluxes which will yield positive definite layer thicknesses. The

computational requirements for implicit vertical advection of two velocities are included for com-

parison. All of these schemes scale linearly with the number of layers, and enough layers are used

that the slightly different treatment of the uppermost and bottommost interior layers is not signifi-

cant. Since the entire calculation of diapycnal fluxes and diapycnal advection is typically on the

order of 10% of the total CPU time involved with the baroclinic portion of an ocean model simu-

lation, replacing a crudely limited forwards Euler scheme with a single iteration of the backwards

scheme will increase the overall model run time by about 10-12%. Multiple iterations with either

scheme are probably prohibitively expensive for common use, while the backwards scheme with-

out iteration only increases the total run time by 3-6%. On the other hand, for studies where accu-

rate portrayal of diapycnal diffusion is important or with significant variations of diapycnal

diffusivity, such as simulation of an entraining density current, the iterative schemes provide excel-

lent solutions at modest expense.

5.  Richardson Number Dependent Entrainment

There are several places in the ocean where velocity shears that might be resolvable by an

ocean GCM drive significant turbulent mixing. Strong turbulent mixing is important for both the

Scheme                        \                       Computer SGI Indigo Cray T90

Forwards Euler with positive definite limitations 1 1

Backwards Scheme without Iteration 3.3 2.0

1 Iteration with Backwards Scheme 4.8 5.0

Additional Iterations with Backwards Scheme 3.3 3.6

1 Iteration with Newton Method Scheme 7.5 8.4

Additional Iterations with Newton Method Scheme 5.9 7.1

 (Vertical advection of two velocity components.) 2.8 2.5

 TABLE 1. Relative CPU time requirements of various schemes on two computers.

0.1 ∆ρ κ∆t( )
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mass and momentum budgets of the equatorial undercurrents (Jones, 1973; Wacongne, 1989; Ped-

losky, 1996). While there is strong observational evidence that high-frequency, small scale shears

are as important as the resolvable scale shears in driving the mixing (Peters et al., 1995), there has

been considerable success with parameterizations based on the resolved Richardson number due

to shears with vertical scales of tens of meters (Pacanowski and Philander, 1981; Yu and Schopf,

1997). Essentially these parameterizations are able to reproduce the observation that the resolvable

Richardson numbers are never too small, and just enough mixing occurs to keep the Richardson

numbers at or above some threshold value, even if the variability of the mixing or its exact cause

are not captured. The gravity currents generated by the overflow of dense waters from marginal

seas such as the Mediterranean and Nordic seas exhibit intense entrainment, doubling or even qua-

drupling their volume flux within a few days (Price and Baringer, 1994). This entrainment is abso-

lutely critical in determining the watermass properties that fill the open ocean, but since most of

the entrainment occurs very vigorously across extremely sharp density gradients it is difficult to

simulate this process accurately. This section presents a Richardson number dependent mixing

scheme which will be shown in the next section to give reasonable entrainment in a simple simu-

lation of a gravity current.

Price and Baringer (1994) successfully model the entrainment into a gravity current using

the Richardson number dependent entrainment parameterization which Turner (1986) has devel-

oped based on laboratory simulations. According to Turner (1986), the entrainment rate of a gravity

current is well parameterized by

, (5.1)

where  is the magnitude of the velocity difference between the gravity current and the environ-

ment and the bulk Richardson number is given by

. (5.2)

In discrete isopycnal layers the appropriate definition of the layer Richardson number is

. (5.3)

Eq. (5.3) is obtained by comparing the changes in kinetic and potential energy when a layer

entrains a small amount of fluid and by requiring that these changes balance when . With

this formula for the layer Richardson number, Turner’s parameterization, (5.1), can be used without

modification. To maintain the density of the layer in question, the entrainment into layer k from

above and below must be related by . Since (5.1) is essentially a
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parameterization of entrainment from above into a layer with a density that is much closer to the

density of the existing bottom boundary layer than to the interior density, the final parametrization

should agree with (5.1) when  and

. With this constraint, a consistent estimate of

 across a layer is given by

. (5.4)

When the density differences between layers are equal, (5.4) is simply

, (5.5)

where the final, approximate expression holds when the velocity of layer k is the average of the

velocities of its neighbors. So the equivalent expression for discrete layers to Turner’s parameter-

ization for Richardson number dependent entrainment becomes

, (5.6)

where  is entrainment from layer  into layer k, and  and  are defined in (5.4) and

(5.3). The entrainment rates given by (5.6) are most appropriately interpreted as the net entrainment

of a layer, not the total entrainment; this interpretation gives results which are consistent with the

original Turner parameterization when there are multiple thin layers separating the entraining grav-

ity current from the interior.

Ideally both the velocities and the layer thickness in (5.3) and (5.4) would be treated implic-

itly, and a sufficient number of vertical iterations could be used to determine the exact solution to

the set of equations found by substituting the entrainment rates given by (5.6) into (3.1). But this

approach would be too time consuming for practical use - in order to guarantee convergence the

number of iterations would have to be on the order of the number of layers. Instead an approximate

estimate of the net velocity differences after a time step will be used here with a scheme that is

implicit in the layer thickness.

The velocity differences between layers before the entrainment may be quite different from

the differences afterwards, especially for thin layers. For example, if vertical viscosity with coeffi-

cient ν is applied before diapycnal diffusion, adjacent layers that are much thinner than  will

have approximately the same velocities. (Hallberg and Rhines (1996) use an upwind-biased verti-
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cal viscosity to solve the difficulties associated with calculating the Montgomery potential gradient

near the point where an isopycnal intersects the sloping bottom.) A reasonable estimate for the final

velocity differences might be the velocities that each layer would have if it entrained enough to

have at least some minimum thickness, say  or , if this fluid were not in turn

entrained by neighboring layers. (The exact value of  is relatively unimportant in most

instances.) These estimated velocities can be calculated implicitly with a tridiagonal set of equa-

tions:

, (5.7)

where

(5.8)

is an estimated entrainment rate with limitations to prevent entrainment of nonexistent fluid. Essen-

tially this step is only necessary to prevent extremely large or small shears in small amounts of fluid

from having an excessively large influence on the evolution of a simulation. The velocities of suf-

ficiently thick layers are unaltered by this approach, while velocity shears are roughly homoge-

nized over a vertical distance over which the background viscosity or diffusivity might be expected

to work within a time step.

The layer Richardson numbers are proportional to the layer thicknesses, so it is straightfor-

ward to write an easily solvable time integration scheme for (5.6) that is implicit in the layer thick-

ness and explicit in the layer velocities. Defining

(5.9)

to be the layer thickness at which the Richardson number would be 1 and using the entrainment

defined by (5.6), the equation for the layer thickness after a time step of turbulent mixing is

. (5.10)

The choice that the layer should detrain down to the critical thickness when it is thicker than this

thickness is because the final flux will be taken as the maximum of this turbulent flux and the dif-
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fusive flux - this choice limits the amount of net detrainment that a layer can experience due to tur-

bulence in neighboring layers. The  branch of (5.10) can easily be solved for ,

giving

. (5.11)

So when , the diffusive buoyancy flux is given by

, (5.12)

which is always greater than . (Recall that γk, defined by (4.5), is a ratio of density dif-

ferences that is 1 for equal density differences.) When

. (5.13)

In both limits

, (5.14)

which is the same as the large Gk limit of its diffusive counterpart. The final buoyancy flux through

a layer is then given by

, (5.15)

where  is defined by (4.3) and  is defined by (4.4). The entrainment parameterization

given by (5.15) is depicted in Fig. 5 for one qualitatively illustrative case. The partial derivative Fk

with respect to Gk is chosen to correspond with the definition of Fk:
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, (5.16)

These definitions are then used with the vertically iterative Newton’s method based scheme

described in (4.7).

The scheme described here is just one particular Richardson number dependent scheme.

Any implicit scheme for which both the buoyancy flux within a layer and the derivative of that flux

with respect to the fluxes in neighboring layers can be found efficiently could be used equally well

in isopycnal coordinate models with the proposed framework. Many proposed parameterizations

of Richardson number dependent mixing, however, would involve solving a quartic equation (Pac-

anowski and Philander, 1981) or a higher order polynomial without an analytic solution. Yu and

Schopf (1997) have compared a number of Richardson number dependent mixing schemes, and

find that the exact parameterization at small Richardson numbers has very little impact on the flow

in the equatorial Pacific, provided that mixing is large at small Richardson number and that there

is an abrupt change in the mixing rates near an appropriate critical Richardson number. The current

scheme satisfies this condition.

Figure 5. Entrainment within a time step as parameterized by (5.15) as a function of the initial
layer thickness, normalized by , the critical thickness for turbulent entrainment.
This example has Gk=0, , and .
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6.  An Entraining Gravity Current

The recent DYNAMO ocean model intercomparison project found that while geopotential

coordinate models and sigma coordinate models exhibited excessive entrainment in the denser por-

tions of the East Greenland current, downstream of Denmark Strait, an isopycnal coordinate ocean

model exhibited dramatically insufficient entrainment (DYNAMO Group, 1997). This weak

entrainment leads to deep flow around the tip of Greenland that is both much denser and with a

much smaller volume flux than in the real world, despite a reasonable flow through Denmark Strait.

Over time, this and a similar lack of entrainment in other dense water flows over sills could lead to

substantial deviations of the deeper watermass properties throughout the world from those

observed.

The value of the new time integration scheme is demonstrated with a qualitative simulation

of an entraining gravity current. The parameters chosen here are similar to those used by Price and

Baringer (1994) in their streamtube model of the Mediterranean water overflow. A single column

model is used, and it is assumed to move along with the flow, while all horizontal effects are

neglected. The interface between each layer is assumed to be parallel to the specified bottom slope,

which increases linearly with time over 1/2 day up to a value of 0.01, while the upper layer is at

rest, so the horizontal pressure gradients increase linearly with density. Initially there is a 100 m

thick layer of fluid resting on the bottom that is 2 kg m-3 denser than the interior fluid. The fluid

accelerates from rest subject to Coriolis acceleration with  s-1, bottom drag due to

a near-bottom viscosity of  m2 s-1, and an interior background vertical viscosity of 10-4 m2

s-1 in addition to turbulent Prandtl number 1 entrainment. Entrainment is parameterized by (5.12)

and (5.13) or a background diapycnal diffusion of 10-4 m2 s-1 (whichever is greater). (So in this

simulation the Prandtl number is always between 2 for entrainment due to the background diffusion

and 1 for turbulent entrainment.) A time step of 1 hour, a reasonable value for a moderately high

resolution ocean simulation, is used in all of these experiments except in one very high resolution

case, which is essentially converged in both vertical and temporal resolution. The results from the

single column model are qualitatively similar to three-dimensional tests. The single column dem-

onstration is presented here because it isolates the effects of diapycnal diffusion and the Richardson

number entrainment from more complicated spatially varying processes.

As the fluid accelerates down the slope, there is initially intense entrainment, but the veloc-

ities are arrested by the Coriolis force, and subsequent bursts of entrainment occur at about the

same phase of the inertial oscillation. This rapid adjustment is seen quite clearly in an example with

50 layers using the vertically iterative implicit entrainment scheme described in the previous two

sections (Fig. 6a). Almost all of the entrainment occurs within the first day or two, both in this

example and in entraining gravity currents in the real ocean (Price and Baringer, 1994). 50 layers

is much more resolution than would be reasonable in a simulation of the large scale ocean circula-

f 7.29
5–×10=

2
2–×10
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tion, but it is not unreasonable to expect that there would be at least 6 layers between the density

at which the Mediterranean water flows through the Strait of Gibraltar and the ambient Atlantic

water. With only 8 layers, the results are remarkably similar to those from the 50 layer simulation

Figure 6. Isopycnal depths and velocities (along-channel to the right, upslope upwards) as a
function of time and depth for an entraining gravity current on a slope that increases up to
1% over the first half day, initially with 50 layers (a) or 8 layers (b). The backwards scheme
is used for each layer with 1 full iteration through the layers to calculate the entrainment.
The physical system is identical in the two figures, and is described fully in the text.



Robert Hallberg 27

of the same physical process (Fig. 6b). While some details, such as the later inertial oscillation

driven entrainment in the middle of the stratified transition between the bottom boundary layer and

the interior, are muted with the coarse resolution in density, the most important aspects of the

higher resolution version have been captured to the extent that the vertical resolution allows. The

results from these demonstrations of the implicit, vertically iterative Richardson number entrain-

ment scheme are similar to those reported by Price and Baringer (1994) both for a specially devel-

oped streamtube model and to the observed downstream evolution of the Mediterranean water

plume.

 There are a few instances in Fig. 6a where a layer becomes quite thin. These points are a

result of only using 1 vertical iteration; with 4 iterations they do not occur anywhere in this test.

When not enough iterations are used for the solution to converge, it is necessary to limit the fluxes

to guarantee that there will be no negative thickness layers. If the estimate of the fluxes after the

final, Nth, iteration are given by  from (4.7), it can be shown from (2.9) that layers thinner than

ε (which may be exceedingly small or even 0) will be precluded by the corrective fluxes given by

the two vertical passes:

 and (6.1)

, (6.2)

with  in the uppermost layers and  in the bottommost layers given by

, , , and . (6.3)

The fluxes which are actually used are . These corrections will rarely be necessary, and even

then the grace with which this scheme subsequently handles these vanishingly thin points is an

indication of the robustness of this scheme.

The thickening bottom boundary layer in Fig. 6 is driven by interior shears due to bottom

drag arresting the bottommost layer. In a three-dimensional flow, the bottom drag leads to a downs-

lope Ekman transport that tends to thin the bottom boundary layer on the upslope side of a plume.

In the real ocean much of the mixing within the bottom boundary layer is due to small scale turbu-

lence, parameterizable with a friction velocity (Weatherly and Martin, 1978). This can be accom-

modated in isopycnal coordinate models quite easily by specifying the vertical profile of the

diapycnal diffusivity. The potential energy increase due to diffusive entrainment by a layer is

related to the diapycnal diffusivity of that layer by the simple expression
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, (6.4)

which is independent of the layer thickness, neighboring layer entrainment rates or any other prop-

erty of the flow. So if a turbulent kinetic energy source at the bottom is specified, the corresponding

diffusivity (perhaps accounting for the decay of turbulence away from the bottom boundary) can

be applied to each layer, starting from the bottom, until enough layers are found to accommodate

that energy source while still obeying the constraint to impose the boundary conditions, (4.3).

This technique for depicting the effect of the bottom source of turbulent kinetic energy will

work well when the vertical resolution is sufficiently fine and the stratification is sufficiently high

that the two bottommost layers are largely contained within the region of enhanced near-bottom

turbulence. With less stratification or resolution, it is not possible to depict strongly bottom trapped

Figure 7. Density profiles after 3.5 days in the same simulation as depicted in Fig. 6 with
several different time integration schemes and varying resolutions with the backwards
vertically iterative scheme developed in this manuscript. The time step is 1 hour in each case
except for the 491 layer iterative scheme simulation, where it is 2 minutes. The iterative
scheme is described by (5.15), (5.16) and (4.7), while the noniterative backwards scheme is
the same except for the vertical iteration described by (4.7), and the clipped forwards
scheme is a simple forwards in time discretization subject to the constraint

. The 491 layer case uses 10 vertical iterations (more than enough
to be fully converged at each time step), while the 50 and 8 layer iterative scheme cases use
just a single vertical iteration.

Fk ∆ρ κBackground ∆t⁄<

t∂
∂

PEk( ) κkg∆ρk=



Robert Hallberg 29

mixing (mixing within a density layer is by definition unrepresentable in an isopycnal layer model),

and an appropriate bulk bottom boundary layer may prove beneficial. Still, microstructure obser-

vations by Polzen et al. (1997) indicate that the enhanced turbulent kinetic energy conversion to

potential energy extends thousands of meters above the rough bathymetry on the flanks of the Mid-

Atlantic Ridge in the deep Brazil Basin. If these observations are characteristic of the entire abyssal

ocean, it is likely that a turbulent kinetic energy based parameterization of diapycnal diffusion will

work well in an isopycnal coordinate model with adequate and judiciously chosen vertical resolu-

tion, and it may not prove necessary to have a separate bulk bottom mixed layer for many large-

scale simulations.

The density profiles after 3 days show that the vertically iterative time integration scheme

developed here is much more accurate than other alternatives, as seen in Fig. 7. One case with

absurdly high resolution in density and time (491 layers and a 2 minute time step) using 10 vertical

iterations is essentially converged. With the vertical iteration scheme (even with just 1 iteration)

both the case with 50 layers and the case with 8 layers agree with the converged case. Another cal-

culation (not shown) using the vertical iteration scheme with 50 layers and a 6 hour time step is

virtually indistinguishable from the case with 50 layers and a 1 hour time step. A simple forward

Euler time integration with the most generous flux limit that guarantees positive definite layer

thickness entrains at a negligibly slow rate; the density at the bottom has not changed at all after 3

days, while in the true solution it is 60% of the way to the interior density. The backwards scheme

without the vertical iteration also substantially underpredicts the amount of entrainment at this

point, but at least it qualitatively resembles the converged solution, and that semblance improves

with shorter time steps or fewer layers.

The utility of the diffusion scheme with the Richardson number dependent mixing can also

be demonstrated with simulations from a fully three dimensional primitive equation isopycnal-

coordinate ocean model. Water is initially all in the lightest layer, except in a bay at the top of a

Gaussian slope in a reentrant channel. Within the bay, a sponge strongly restores the density

towards a step-profile with the bottommost 150 m of water 2 kg m-3 denser than the remaining 350

m of water. 19 layers (20 interfaces), each differing in density from its neighbors by 0.1 kg m-3,

separate the lightest and densest layers. The dense water flows out of the bay at a rotating hydrau-

lics controlled rate of about  and flows both down and

along the slope. The horizontal resolution, 22 km, is not excessively high, but does permit adequate

resolution of the slope and of the internal deformation radius of order 50 km. The 1 hour time step

is appropriate for this horizontal resolution. The maximum slope is 1%. While these parameters are

not intended to exactly reproduce any particular overflow, they are of a magnitude to be qualita-

tively illustrative of several important overflows.

The two simulations are identical except for the parameterization of diapycnal mixing. The

one depicted in Fig. 8a uses a background diapycnal diffusivity of 1 cm2 s-1. The other simulation,

g20∆ρ ρ⁄( ) 150m( )2
f⁄ 3.4

6×10 m
3
s

1–≈
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shown in Fig. 8b, also includes the Richardson number dependent mixing. Both use a single itera-

tion of the vertically iterative time stepping scheme advocated in this manuscript, with a backwards

Euler estimate of the diffusive entrainment by a single layer.

Without the Richardson number dependent mixing, a plume of nearly undiluted overflow

water rapidly descends to the bottom of the slope. This is essentially the same behavior as was

found with MICOM in the representation of the flow over the Denmark Strait in DYNAMO

Figure 8. Density anomaly of the water 10 m above the bottom after 50 days in an entraining
gravity current. In (a) a constant diapycnal diffusivity of 10-4 m2 s-1 is used. In (b) the
Richardson number dependent entrainment described in section 5 is used as well. The thin
horizontal lines mark the isobaths of the Gaussian slope, the thick line marks the coast. The
uncolored areas are at the initial, uniformly light density. Dense water is formed by a sponge
in the bay in the northeast. The channel is reentrant, and the slightly dense fluid in the
northwest corners of the basin is flowing eastward from the bay.
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(DYNAMO Group, 1997). The mixing that does take place is due to the explicit mixing parame-

terization and the spreading and thinning of the dense layer due to the divergent Ekman transport.

This simulation, while not reproducing the ocean’s behavior, does demonstrate the utility of the

proposed time stepping scheme with a constant diffusivity in a difficult situation (the behavior at

 is important in this simulation) in a full three-dimensional ocean GCM. Halving the

timestep causes only very minor changes in the result. This simulation also illustrates one great vir-

tue of isopycnal models relative to other types of models for simulating gravity currents: there is

not excessive numerical entrainment - all entrainment must be parameterized explicitly.

With the Richardson number dependent mixing, the dense water plume rapidly entrains to

about 4 times its initial volume. The volume of dense water flowing out of the bay is the same in

both cases, due to the robustness of the rotating hydraulic control, but essentially no dense water

reaches the foot of the slope. Instead there is a very thick plume of strongly diluted water extending

along the slope with the Richardson number dependent mixing. The behavior in this case is quali-

tatively similar to that seen in the open ocean (Price and Baringer, 1995). This simulation demon-

strates that this Richardson number dependent mixing scheme alleviates the pathology in the

representation of dense water overflows found with the isopycnal coordinate ocean model in

DYNAMO.

It is actually very important for the large scale ocean circulation that the entrainment occurs

with a sufficiently short time scale. Entraining gravity currents drop through the thermocline with

a timescale of a few days (Price and Baringer, 1994) - if the time integration scheme does not per-

mit entrainment to occur within that time, it is no longer possible for the gravity current to entrain

thermocline waters. With insufficiently rapid entrainment, the overflows that contribute to interme-

diate or deep waters in the real world could easily wind up at the bottom of the ocean. A numerical

ocean model which fills the abyssal Atlantic Ocean with Mediterranean overflow waters and the

abyssal Indian Ocean with Red Sea overflow water would have limited credibility!

7.  Conclusions

An implicit, vertically iterative time integration scheme for the diapycnal diffusion equa-

tions for an isopycnal coordinate ocean model has been proposed here. This scheme is stable with

an arbitrarily large time step, accurate for well-resolved layers ( ), and well behaved for

thinner layers. This scheme is potentially much more efficient than the proposed scheme of Hu

(1996a) because it can be implemented in two vertical passes through a column, and it does not

impose a potentially unphysical limit on the intensity of mixing. This scheme is also more accurate

than the entrainment scheme of Oberhuber (1993) for long time steps relative to the layer thickness

divided by the entrainment rate because it permits interactions between many layers within a single

time step. (Without any interactions between layers, the backwards scheme is equivalent to Ober-

κ∆t h
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huber’s scheme.) The McDougall and Dewar (1998) treatment of separate temperatures and salin-

ities and nonlinearities of the equation of state in isopycnal coordinate ocean models is entirely

compatible with this technique. Repeated iteration in the vertical can improve the accuracy of the

results, but even a single vertical iteration gives qualitatively reasonable results that are extremely

accurate when . The technique described here is qualitatively accurate in all situations

that have been examined and is sufficiently efficient to be generally useful in isopycnal coordinate

ocean models.

It should be reiterated that diapycnal mixing in an isopycnal coordinate model is only com-

plex when stratification is large and mixing is intense. In the vast majority of the ocean’s volume,

the intrinsic timescales of diapycnal mixing are extremely long, and even the simplest time step-

ping scheme for diapycnal mixing works well. The approach suggested here is quite accurate in

this limit, but it is substantially more costly than the simplest scheme.

The new implicit and vertically iterative time integration scheme works well with an appro-

priate Richardson number dependent entrainment parameterization, while non-implicit, nonitera-

tive time integration schemes are useless for accurate portrayal of entraining gravity currents with

reasonable length time steps and modest to good density resolution. The important entrainment in

gravity currents occurs with a timescale of only a few days (Price and Baringer, 1994), and any

time integration scheme which does not permit the entrainment to occur within that time will lead

to qualitatively inaccurate watermass properties throughout the deep ocean. While it has not been

demonstrated here, the same Richardson number dependent entrainment should also be qualita-

tively reasonable in other regions of strong mixing driven by the resolvable scale shears, such as in

the Equatorial Undercurrents.

The DYNAMO Group (1997) finds that their isopycnal coordinate ocean model lacks

diapycnal mixing in the water just downstream of dense water overflows and concludes that “an

improved representation of the bottom boundary layer in this regime should be of highest priority

in the future development of all models”. The Richardson number entrainment scheme described

here is just such an improvement.

Bottom boundary layers are important for the larger scale ocean circulation primarily as

sinks of momentum (and energy and potential vorticity and other related quantities) and for mixing

that determines the watermass properties that fill the abyssal interior. Unlike the surface boundary

layer, the exact temperature and salinity of a well homogenized bottom boundary layer is not

important for most questions of climatic interest. It is entirely possible that an ocean model would

have a satisfactory depiction of bottom boundary layer processes without attaching a separate bot-

tom boundary layer model, provided that an appropriate level of mixing and an appropriate

momentum sink are specified.

An appropriate level of near-bottom mixing cannot be specified in geopotential coordinate

models without some sort of explicit bottom boundary layer model. Winton et al. (1998) have

κ∆t h
2⁄ 1«
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shown that unless the horizontal resolution of a geopotential coordinate ocean model is finer than

the bottom boundary layer thickness divided by the bottom slope, vastly excessive convective bot-

tom mixing occurs in a dense downslope flow without an explicitly parameterized bottom bound-

ary layer. Beckmann and Döscher (1997), Killworth and Edwards (manuscript submitted to J.

Phys. Oceanogr.), and Gnanadesikan, Pacanowski, and Winton (manuscript in preparation) have

all developed explicit bottom boundary layer parameterizations of varying complexity to be

appended to geopotential coordinate ocean models, with a principle goal of controlling nonphysi-

cal diapycnal mixing. The fact that, in contrast, an isopycnal coordinate ocean model inherently

has too little mixing means that it is possible to achieve an equally satisfactory result by adding

diapycnal mixing in appropriate situations, but without all of the complications (such as having to

unmix detrained fluid, thereby violating the second law of thermodynamics [Bleck et al., 1992]) of

adding an explicit, variable density boundary layer model to the bottom of an isopycnal coordinate

ocean model.

Isopycnal coordinate ocean models will never be as accurate as sigma coordinate models

for simulating the structure of the bottom boundary layer. While a sigma coordinate model can

enforce very high resolution near the bottom and incorporate high order turbulence closure

schemes (Blumberg and Mellor, 1987), the resolution in isopycnal coordinates is automatically

expelled from unstratified fluid. But isopycnal coordinates are in some ways well suited for

describing the watermass modifications that are important for the large scale ocean density struc-

ture. The important dense overflows are typically much denser than the open ocean waters at the

sill depth. If there is no resolution in density between the water flowing over a sill and the ambient

interior water, this is only due to the a priori assertion in setting up the simulation that the distinc-

tion between these watermasses is not significant. In some ways an isopycnal coordinate model

with Richardson number dependent mixing and a specified bottom turbulent kinetic energy source

is ideal for depiction of the effect of the bottom boundary layer on the large scale ocean circulation;

mixing in the absence of stratification is relatively unimportant, while stratified regions are auto-

matically well resolved by the migrating isopycnal layers.
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